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Echinacea purpurea preparations (EPs) have been traditionally used for the treatment of various infections and also for wound healing. Accumulating evidence 
suggests their immunostimulatory effects. Regulatory T cells (Tregs) are known to play a key role in immune regulation in vivo. However, there have been no 
reports so far on the effects of EP on the frequency or function of Tregs in vivo. Therefore, in the present study, we investigated the quantitative and functional 
changes in Tregs by in vivo administration with EP. The frequencies of CD4+FoxP3+ and CD4+CD25+ Tregs in the spleens of BALB/c mice administered with 
EP for 3 weeks were investigated by flow cytometry. The suppressive function of CD4+CD25+ Tregs in association with the proliferative activity of 
CD4+CD25- effector T cells (Teffs) and the feeder function of CD4- antigen-presenting cells (APCs) were analyzed by carboxyfluorescein succinimidyl ester-
dilution assay. The results showed a lowered frequency of CD4+FoxP3+ and CD4+CD25+ Tregs and attenuated suppressive function of CD4+CD25+ Tregs, 
while the feeder function of APCs was enhanced in the EP-administered mice. On the other hand, the proliferative activity of Teffs was not significantly 
different in the EP-administered mice. The results suggest that decreased number and function of Tregs, in association with the enhanced feeder function of 
APCs, may contribute to the enhancement of immune function by EP.  
 
Keywords:  Echinacea purpurea, Immunomodulation, Regulatory T cell, FoxP3. 
 
 
 
Echinacea purpurea has long been used as a traditional herbal 
medicine for the treatment of common cold in North America [1a]. 
Recent studies showed that E. purpurea preparations (EPs) 
significantly reduced the duration and/or severity of upper 
respiratory infections (URIs) [1b,c,2]. EPs were also reported to be 
effective in the clinical improvement of many infectious diseases 
including skin disorders [3a,b]. Experimental studies showed that 
extracts of E. purpurea have antimicrobial activity [3-6].  
 
The immune-enhancing effects of Echinacea are well-documented 
and the underlying mechanisms have been widely investigated 
[4b,6,7]. The immunological mechanisms accumulated so far 
include enhanced phagocytic activity and macrophage activation as 
well as enhanced NK cell activity, suggesting the activation of an 
innate immune system [8a-8c]. Additionally, mitogen-stimulated 
lymphocyte proliferation and specific antibody production were 
also enhanced, suggesting that Echinacea may also activate the 
adaptive immune system [8d,9a,b]. Other noticeable findings 
reported increased secretion of several cytokines, including TNF-, 
IL-1, and IL-6 from monocytes and/or dendritic cells [7a,10a].  
 
Regulatory T cells (Tregs) are known to play a key role in the 
maintenance of immune homeostasis in vivo [10b]. Although Tregs 
were originally identified in the CD4+CD25+ fraction for their 
critical role in preventing the development of autoimmune diseases, 
they are also important in the regulation of most of the immune 
responses, including infection, allergic reactions, graft rejection and 
anti-tumor immunity [10c]. Tregs exert their regulatory effects by 
suppressing the proliferation and function of immune effector cells 
including CD4+ helper T cells [10d], CD8+ cytotoxic lymphocytes 
[10e], B cells [10f] and NK cells [10g]. Thus, Tregs regulate both 
innate and adaptive immune systems in vivo. However, there are no 
reports on how EPs influence either the frequency or function of 
Tregs in vivo. Among the many molecules that may distinguish 

Tregs from other lymphocyte subsets, FoxP3 is the most specific 
marker identified so far [10h]. Deficiency of FoxP3 results in 
lymphoproliferative and autoimmune disorders due to agenesis of 
Tregs [11,12]. Forced expression of FoxP3 in effector T cells 
conferred suppressive function and similar phenotype as Tregs 
[13a]. Therefore, it can be argued that FoxP3 is a master gene 
regulating the development and function of Tregs. In the present 
study, in order to test the effect of EP on the number and function of 
Tregs in vivo, we investigated the number of CD4+FoxP3+ and 
CD4+CD25+ cells, as well as the suppressive function of 
CD4+CD25+ cells in spleens from BALB/c mice orally administered 
with EP for 3 weeks. The results indicated that oral administration 
of EP decreased the number of CD4+FoxP3+ and CD4+CD25+ cells, 
as well as suppressive function of CD4+CD25+ cells. Flow 
cytometric analysis showed that the percentage and absolute counts 
of CD4+CD25+ and CD4+FoxP3+ fractions in splenocytes obtained 
from mice administered with EP were found to be significantly 
lower than those from control mice (Figure 1), suggesting that EP 
administration reduced the production and/or survival of Tregs.  
 
Carboxyfluorescein succinimidyl ester-dilution assay showed that 
the proliferative response of CD4+CD25- Teffs from the EP-
administered mice was comparable with those from control mice 
(Figure 2A, B, C). By contrast, the proliferative responses of Teffs 
in the presence of CD4- APCs from the EP-administered mice were 
significantly stronger than those in the presence of CD4- APCs from 
control mice, irrespective of the source of Teffs (Figure 2A, D, E).  
A stronger proliferative response of Teffs in the presence of APCs 
from the EP-administered mice was also observed in co-culture 
with CD4+CD25+ Tregs (Figure 3). Taken together, it was 
suggested that CD4- APCs from the EP-administered mice provided 
better supportive signals necessary for the proliferation of 
CD4+CD25- Teffs than those from control mice. 
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Figure 1: Administration of E. purpurea preparation (EP) decreased the proportions and absolute counts of CD4+CD25+ and CD4+FoxP3+ fractions. The proportion of the CD4+CD25+ fraction in the splenocytes 
from EP-administered mice (lower row) was significantly lower than those of control mice (upper row) (A, B). The absolute count of CD4+CD25+ fraction in the splenocytes from EP-administered mice was also 
significantly lower than those of control mice (C). The proportion of CD4+FoxP3+ fraction in the spleens of the EP-administered mice (lower row) was significantly lower than those of the control mice (upper 
row) (D, E). The absolute count of the CD4+FoxP3+ fraction in splenocytes from EP-administered mice was also significantly lower than those of control mice (F). Data are mean + SD (n = 4). A representative 
series of FACS plots of 3 separate experiments. Comparison of data was made by using independent Student’s t test. *P < 0.05. 

 
For the functional study of Tregs, we investigated the suppressive 
function of only CD4+CD25+ cells, since it is still technically 
difficult to isolate live FoxP3+ cells as they cannot be isolated 
without intranuclear staining. In the spleens from BALB/c mice, the 
CD4+CD25+ fraction substantially overlap with CD4+FoxP3+ 
fraction; 86.7 + 5.1% (n=20) of CD4+CD25+ cells were FoxP3  (data 
not shown) [13b]. Therefore, as Tregs were originally identified in 
the CD4+CD25+ fraction, the CD4+CD25+ fraction reflects the 
functional characteristics of Tregs quite well and is still popularly 
used for functional study of Tregs [10b]. The proliferative responses 
of CD4+CD25- Teffs in the co-culture with CD4+CD25+ Tregs from 
the EP-administered mice were significantly stronger than with 
those from control mice, suggesting that the suppressive function of 
Tregs from the EP-administered mice was weaker than those from 
control mice (Figure 3A – D). The extent of suppression calculated 
by comparing the proliferation of Teffs in the presence and absence 
of Tregs (% Suppression) was significantly different between the 
Tregs from the EP-administered mice and control mice (Figure 3E, 
F). The mechanism of decreased number and function of Tregs is 
beyond the scope of this study. A plausible explanation could be the 
increased level of IL-6 consistently reported in the EP-administered 
mice may be related with the low frequency of Tregs [7,10a]. IL-6 
and/or IL-21 in association with TGF- induces the differentiation 
of naïve T cells into Th17 cells, while inhibiting that into Tregs 
[13c]. IL-6 and/or IL-21 also inhibit the suppressive function of 
Tregs [13b,d].  
 
A combination of each type of cells that take part in the immune 
response isolated from the same mice may reflect their in vivo 
immune. In order to simulate the in vivo immune responsiveness of 
the EP-administered mice, the proliferative responsiveness of Teffs 
in the cognate combinations of APCs (and Tregs) from the EP-
administered mice were compared with those from control mice 

(Figure 4A and B, respectively). The results show stronger 
proliferative responsiveness of Teffs in the cognate cell 
combinations of the EP-administered mice, suggesting that EP 
administration enhanced the immune responsiveness. 
 

Experimental 
 

Preparation of ethanol extract of Echinacea purpurea: An ethanol 
extract of E. purpurea root (available as extract powder) was 
obtained from Tasman Extracts Ltd. (Nelson, New Zealand). 
Chicoric acid, chlorogenic acid, cynarin, echinacoside, and dodeca-
2(E),4(E)-dienoic acid isobutylamide were quantified by HPLC. 
The concentrations of chicoric acid and dodeca-2(E),4(E)-dienoic 
acid isobutylamide contained in the ethanol extract from E. 
purpurea root were 8,665.2 ± 33.1 and 218.5 ± 11.7 μg/g, 
respectively [14]. However, the other compounds, including 
chlorogenic acid, cynarin, and echinacoside were not detected.  
 
Animals: Male BALB/c mice (23 - 27 g; 6 - 8 weeks of age) were 
obtained from Daehan Biolink (Eumsung, Korea) and maintained 
on a 12 h light-dark cycle at a constant temperature of 24 ± 3oC in 
specific pathogen free conditions. This study was performed 
according to the Korean Food and Drug Administration guidelines 
and approved Institutional Animal Care and Use Committee (Permit 
Number: 10-0133). All surgeries were performed under isoflurane 
anesthesia and every effort was made to minimize animal suffering. 
The mice were administered orally with either the E. purpurea (300 
mg/kg) or DMSO control diluted in PBS every day for 3 weeks.  
 
Quantitative analysis of Tregs by flow cytometry: Spleen cells 
were prepared from the mice for flow cytometry by squeezing on a 
cell strainer (70 μm, BD Biosciences, San Jose, CA) and lysing the 
erythrocytes using ACK lysis buffer. After blocking the Fc 
receptors using anti-mouse CD16/CD32 (2.4G2) for 15 min at 4oC,  



Echinacea purpurea enhances the immune responsiveness Natural Product Communications Vol. 9 (4) 2014   513 

 
Figure 2: Administration of E. purpurea preparation (EP) enhanced the feeder function of CD4- 
antigen-presenting cells (APCs). The proliferative response of CD4+CD25- Teffs from the EP-
administered mice (red) were comparable with those from the control mice (black) (A and B). By 
contrast, the proliferative responses of CD4+CD25- Teffs in the presence of CD4- APCs from the EP-
administered mice (red) were significantly stronger than those in the presence of CD4- APCs from 
control mice, irrespective of the source of Teffs (black) (C and D), suggesting that CD4- APCs from 
the EP-administered mice provided better supportive signals necessary for the proliferation of 
CD4+CD25- Teffs than those from the control mice. Statistical analyses of the data shown in Figure 
S1. Data are mean + SD of 3 separate experiments. Comparison of data was made by using one way 
ANOVA. *P < 0.05.  
 

cells were stained for surface antigens with anti-CD4 (H129.19) and 
anti-CD25 (PC61) for 30 min at 4oC. For intranuclear staining      
for FoxP3, cells were fixed and permeabilized using a mouse 
regulatory T cell staining kit (eBiosciences, San Diego, CA) and 
were stained with FJK-16s-PE-Cy5. Each sample was acquired with a 
FACSCalibur (BD Biosciences) and was analyzed by using Winlist 
software (Verity, Topsham, ME).  
 

Preparation of cells: The CD4+CD25+ fraction was separated from 
the splenocytes of either the control mice or the EP-administered 
mice for Tregs by immunomagnetic selection using a regulatory T 
cell isolation kit from Miltenyi Biotech (Auburn, CA). Purity of 
CD4+CD25+ cells, checked by flow cytometry, was from 90% to 
95%. The CD4+CD25- fraction was separated for the effector T cells 
(Teffs) and the CD4- fraction was isolated and used for antigen-
presenting cells (APCs) after treatment with mitomycin C. Parts of 
the CD4+CD25- Teffs were labeled with carboxyfluorescein 
diacetate succinimidyl ester, as described elsewhere [15]. 
 

In vitro proliferative assay: For the proliferative assay, 104 CFSE-
labeled Teffs were stimulated with various concentrations of anti- 
CD3e (e-Biosciences) in the presence of 105 APCs. In order to 
assess the suppressive function of Tregs, 5 x 103 unlabeled Tregs 
was added to the co-culture of 104 CFSE-labeled Teffs and 105 
APCs. The cells were cultured in DMEM supplemented with 10%  
FCS  (Hyclone, Logan, UT)  in  round-bottomed 96-well plates.    
On the 3rd day of culture,  the  cells were harvested for staining with 

 
Figure 3: Administration of E. purpurea preparation (EP) attenuated the suppressive function of 
CD4+CD25+ Tregs. The proliferative responses of CD4+CD25- Teffs in the co-culture with 
CD4+CD25+ Tregs from the EP-administered mice (red) were significantly stronger than with those 
from control mice (black) (A – D). Suppression (%) calculated by comparing the proliferation of Teffs 
in the absence and presence of Tregs are also significantly different between the Tregs from control 
mice (red) and those from the EP-administered mice (green), irrespective of the source of Teffs and 
APCs in the co-culture (E). The average suppression (%) by Tregs from the EP-administered mice 
(green) was approximately 31.2 + 2.7% (n = 48) less than that from the control mice (red) (F). 
Statistical analyses of the data shown in Figure S2. Data are mean + SD of 3 separate experiments. 
Comparison of data was made by using either one way ANOVA (A – D) or independent Student’s t 
test (E and F). *P < 0.05. 

 
 

Figure 4: Administration of E. purpurea preparation (EP) enhanced immune responsiveness. The 
proliferative responsiveness of Teffs from the EP-administered mice in the presence of cognate APCs 
(and Tregs, red) from the same mice was stronger than that from control mice (black). APCs + Teffs 
combination (A); APCs + Teffs + Tregs combination (B). Data are mean + SD of 3 separate 
experiments. Comparison of data was made by using one way ANOVA. *P < 0.05. 
 

anti-CD25-PE (BD Biosciences and anti-CD4-PerCP (BD 
Biosciences). Whole cells were acquired for analysis by using 
Winlist software  (Verity, Topsham, ME). For the precise analysis 
of the proliferative response of the Teffs, precursor frequency (Pf) 
was estimated for the cells exclusively gated for CFSE+CD4+ live 
cells according to the scattering characteristics using the 
proliferation wizard of Modifit software (Verity), as described 
before [13b].  
 

Comparison of immune function before and after the 
administration of EP in mice: We assessed the immune 
responsiveness of the EP-administered mice by comparing the 
functional activities of Teffs, APCs and Tregs with those of the 
control mice treated with DMSO. Comparisons were made from the 
results of criss-cross combination of the Teffs, APCs and Tregs 
from the control and the EP-administered mice (total 12 
combinations; 4 combination of the Teffs and APCs; and 8 
combinations of the Teffs, APCs and Tregs). For the functional 
assessment of the Teffs, the Pf values of the Teffs from the control 
and the EP-administered mice, in the presence of the same APCs, 
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i.e. from the control or the EP-administered mice, were compared. 
Similarly, for the functional assessment of APCs, the Pf values of 
the same Teffs, i.e. from the control or the EP-administered mice, in 
the presence of APCs from the control and the EP-administered 
mice were compared. For the functional assessment of Tregs, the Pf 
values of the Teffs were compared between those in the absence 
and presence of Tregs, to give rise to the suppressive activity of 
Tregs (% Suppression). In order to assess the overall immune 
function of the EP-administered mice, we also compared the Pf 
values of the Teffs in the presence of cognate APCs (and Tregs), i.e. 
between the combination of Teffs and APCs (and Tregs) from the 
control mice and those from the EP-administered mice.  

Statistical analysis: Data are expressed as mean + SD of 3 separate 
experiments. Comparison of data between two groups was made by 
using an independent Student’s t-test, while data from more than 
two groups were analyzed by one way ANOVA. P values less than 
0.05 were considered statistically significant.  
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